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The paper describes an approach to the solution of the adjustment 
problem for normally distributed data utilizing the Bayesian estimator 
applied to photogrammetric bundle block adjustment. 

Under the assumption of uncorrelated observations (eg . image co­
ordinates x', y' ) this approach does not require the inversion of matrices 
it also allows a sequential introduction of single consecutive observations 
( omi tabili ty for online adjustment) as well as the 5_mplementation of an 
error-snooping algorithm . 

Finally the results of an attempt at extrapolation of timing require­
ments is included . 

INTRODUCTION 

In the data acquisition pha~-,c~ of photogrammetric block adjustment, the 
image coordinates are measured in pairs of x' and y' for each point in 
sequence one after the other . 

The classical data processing phase can be started only after all data 
has been acquired and is thus generally unsuitable for on-line procedures ; 
a more readily adopted estimator has to be found . Eg . E . M. Mikhail and 
R.F . Helmering proposed in {2} a recursive approach utilizing the 
implementation of additional data (observations) as well as delection of 
rejected data (eg . blunders) based on the least squares estimator . 

A similar formulation for the estimator procedure is given in this 
paper although explained in terms of using a more general justification 
for this kind of approach. 

The mathematical model for this adjustment is taken to be the complete 
set of information about the functional description of the physical relation 
between image and ground surface locations as well as their stochastic model . 

While the functional model is adopted unchanged from the conventional 
Bundle Block Adjustment, the stochastic model will be extended . 

THE STOCHASTIC MODEL 

The stochastic model is the description of the probabilistic properties 
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of the variables involved in the functional model regarding distribution 
functions , variances and covariances . 

In surveying and photogrammetry, observations and variables derived from 
observations are generally regarded as normally distributed. This indeed is 
the distribution form required for the application of the Least Squares 
Estimator; it also permits the application of other estimators such as the 
Bayesian or Maximum Likelihood. 

The linear Bayesian estimator will be used within this papers. 

Quoting K. Kubik {3} : 

" In these Bayesian methods it is assumed that an 'a priori' 
probability distribution is already known of the unknown 
parameters before the sampling commences. The sample is 
then used to refine this a priori knowledge." 

The least squares estimator also requires some knowledge about unknowns 
before commencing the estimation process in form of approximations to the 
unknowns; eg. coordinate approximations for ground points, exterior, and 
often also interior , orientation data, as well as for the "additional 
parameters" when adopted . But it does not require any other knowledge about 
their stochastical model than being free variable normally-distributed random 
data. In practice some of this data is introduced as "observed unknowns" 
(as proposed here in general). 

For instance, the flight elevation can be observed by statoscope; the 
camera location at the instant of exposure can be determined by comparison 
of image and maps available, and so on. All these determinations of 
approximations to the unknowns are actually direct estimation of the unknowns 
themselves , hence, by their nature observations to which estimates of 
accuracy can easily by assigned . 

This also applies for the coordinates of unknown ground points which 
might be retrieved from maps or even more conveniently within the program 
itself from image coordinates and an assumed medium ground elevation 
including a variance estimation by error propagation law . 

Those direct estimations of the unknowns constitute the best knowledge 
about the unknowns thems elves before commencing an adjustment (of additional 
observations). 

From this it can be seen easily that the stochastic model has to be 
extended in general in order to make use of valuable information by 
incorportation the unknown approximation as random data together with their 
probability distribution parameters as one part of the input to the 
estimation process itself. The second and third parts of the input 
information are usually the functional model and the observations with their 
distribution parameters . 

THE RECURSIVE ESTIMATOR 

The term recursive estimator is used in this paper in order to describe 
a dynamic estimation process mathematically; such an estimation process 
allows the refinement of the present knowledge about the unknowns by adding 
observation information in the same sequence as the data acquisition process 
provides theT'l . 
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Before commencing any data acquisition (image coor di nate measurement) 
knowledge about the unknowns is assumed i n the form of the i r approximat i on 
in the sense of direct estimat i ons: 

= X with variance o 2 
o X 

0 

The corresponding observation equation formulated for least squares 
adjustment is 

( 1) 

LX + vx = X + dX ox 2 = 0xx with a = 1 (2) 
0 0 

or 

vx = 1.dX 
0 

0 

Since LX and X 
solved by minimizin~ 
that the LX are the 

0 

0 0 0 
0 

(LX - X ) 0xx 0 
0 

aTe identical the least squares adjustement 
V PV simply by setting dX = o which i ndeed 

0 
best known data of the X at that stage . 

0 

( 3) 

problem is 
confirms 

Notice that the coefficient matrix AX contains zeros and a s i ngle 1 per 
row and that it has in general as many rows as i t has columns (a square 
matrix) . Assuming the order of the unknowns in dX to be identical to the 
order of their direct estimations in LX the coeff~cient matrix AX becomes 
a unit matrix : o 

= I = IdX - 0 (4) , (5) 

Adding observations to the present knowledge yields then the 
observation equation system : 

V = Adx - 9. 

where AT = II I, A~ II ; 

and \ = II ( L - AL X 
0

) II 

R- = II o, R-~ II 

The resulting normal equation formulated so that dX can be computed 
then is: 

(6) 

(7) 

(8) 

( 9) 

which is identical to the solution based on the Bayesian estimator (see {1}, 
page 33, 34) and also to the generalized least squares solution given by 
Schmid in { 5} . 

The expansion of the stochastic model as described before actually has 
upgraded the least squares estimator to take the form of the Bayesian 
estimator under the assumption of normally distributed random data . 

The above solution (9) can be rewritten in a form suitable for a 
recursive process, as described below . 

Equation (6) may be re-arranged: 
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as 

or 

V = AdX 9, 

AdX - V - 9, = 0 

This yields two matrix equations 

dX - V = 0 as defined earlier and 
X 

A
1

dX - v
1 

- t
1 

= 0 

(10) 

( 11) 

(12) 

(13) 

whic h is the basic formulation for l east squares adjustment of condition 
equations in the form 

AV - W = 0 

where A = II A
1

, I II 

w = \ = II ( 1 - A1 \) II 

Q = 

0 

= rp XX -1 : -11 
0 

11 

with 

0 

and 

we obtain the Normal equation 

= = 

with 

and 
- 1 · ·T · ·T - 1 Q V = A (AQA ) t 1 

or rearranged and split into two equations 

and for the refinement of the cofactor matrix 
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(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 



Q-- 0xx 0xx 
AT (A Q AT )-1 

ALQXX = + QLL XX 1 1 XX 1 ( 25) 

or T -1 -1 -1 
Q-- = (ALQLLAL + 0xx 

) 
XX 

(26) 

as from above ( 9) . 

A comparison of the above formulations with those given in {1} , {2} and 
{5} immediately shows the identity of the Bayesian estimator and the Least 
Squares solution under the same assumptions . 

Under the assumption of a = unity the cofactor matrix P-1 is identical 
with the variance-covariance m~trix Q of the variables concerned : 

Pxx 
-1 

0xx 
variance-covariance matrix of the unknowns before = = 
adding further observations 

P--
-1 

Q-- variance-covariance matrix of the unknowns after = = XX XX 
adding observations 

PLL 
-1 

QLL variance-covariance matrix of the additional = = 
observations . 

In the case of uncorrelated observations (as here for the image 
coordinate measurement) QLL reduces to a square diagonal matrix for all 
observations . The diagonal elements are the variances of these observations 
and can simply be set equal to the square of the coordinate measurement 
accuracy ox' or oy' . 

Since Q
11 

is assumed to be a diagonal matrix the same solution will be 
found for sequential introduction of single observations as for the intro­
duction of all observations at once into equation (23) . 

In the case of sequential introduction of single_~bservations into (23) 
the matrix A becomes a row vector and the matrix P

11 
= Q

11 
is a 

scalar equal1to o1
2 for any of this single observatlon . 

Slnce the term (A Q AT) then results in a scalar, easily obtained by 
vector multiplications~ ~Be1term _ C~1QXX~L + Q11 ) -1 r~quires only the 
inversion of a scalar, thus provldlng Slmple computatlon tasks . 

This applies for equations (23) and (24) as well as for equation (25) . 

Since one image point is observed usually within two images 
similtaniously it is more practical to introduce not one but four 
observations at a time (x', y ' , x", y"), thus a lp':4 square matrix 
CA

1
QXXAL + Q

11
) will have to be inverted . Still a simple c0rnputation task . 

While equation (23) yields corrections dX to the unknowns, equation 
(24) allows the computation of the observation residual(s) at the present 
stage for those observation(s) which are implemented at that stage (not for 
those implemented at an earlier stage) . 

The residuals V£ are in general subject to alteration throughout the 
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recurs ive adjus tment; hence (24) can not be used directly 1n order to 
compute 0 - a posteriori. 

0 . 

Al though th is is so, equation ( 24) allows a check for blunders previous 
to the refinement of the unknowns and their stochastic model, Q ~' thus 
comprising an important tool for the practical application of tBl s approach : 

(27) 

It is important to stress, that equations (24) and (27) can be computed 
with out applyin g any cor r ecti ons to the unknowns or the s tochast ic model, 
hence equation ( 24 ) and ( 27 ) provi de the means for "error snooping" as 
descr ibed by W. Baarda {8} , F . Amer {g} and others . 

As proposed by Baarda 

w. = _jviL 
l 

0 I qii 
0 

= 

I qii 

0 = 1 
0 

are checked against F {a , 6 , 1, oo}(with eg. a = 0 .001 , 6
0 

= 0 .8 0) in a 
two sided test . 0 0 0 

A ( set of) observation ( s ) may then be rejected when w. > F. with 80% 
probability for not mak ing an error type II and with 1 %o 1 proEabili ty of 
making an error type I . 

l:UMERI CA L LI MI TATION OF THE SUGGESTED APPROACH 

Usual l y the cont rol point coordinates are assumed t o be error f re e , 
thus having zero variance which implies an inf inite weight. Hen ce, PXX 
would carry weight parameters equa l to infinity at thos e p laces corresponding 
t o the control point coordinates and Q would also carry zero diafonal 
el ements accord ingly . While equation f§) would not be so l vab l e in practice 
wi t h a digital computer un l ess the infinity large diagonal elements in PXX 
are approximated with the largest number manageable by that computer, 
equations (23) , (24), (25) and (27) are no prob lem at all . 

Hence equations ( 23 ) , (24), ( 25) and ( 27) provide a generally fl ex i ble 
formulation for digital computers in particular a ls o as observations assumed 
to be error free will cause no numerical prob l ems . 

At the other hand the numerical so lution of equations (23) , (24) and 
(2 5 ) will become problematic in a ca se when e i ther the unknowns approximations 
or th e observat ions or both are regarded as having an infinite variance 
implying a weight equal to zero. But this ind0ed has no practical value 
since data with zero weight are us eless in contributing information . 

The approach out l ined befor e also extends i nt o the f i e l d of FREE 
~JETWORKS . The solution f or singular normal equation systems as for instance 
given by Mittermayer {6} implement s t he conditi on E(dXdX ) = min , hence , 
implying equal weighted unknown approximations , although some may require 
stronger corrections than others . The solution described here in effect 
implies a t a l l stages because of dX = VX the condition E( dXPX dX) = min . 
Singularity should not occur other than i n those cases wher e £he functiona l 
model is too weak , that is to say when the unknwons are i ndeterminate or 
nearly so, or when the functional model is incorrect . 
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PRACTICAL LIMITATION OF REAL TIME BUNDLE BLOCK ADJUSTMC:T 

The suggested approach requires the availabilit~ of coordinates of 
points on the ground, exterior and interior orientation data of the cameras 
involved at all exposure stations in question and, as well, their variance­
covariance matrices at all times during the estimation process. All this 
data required should be organized within the storage facilities of the 
computer system which is interfaced with the stereo-comparator module of the 
analytical plotter. 

In practice neither of the above mentioned data types can be or should 
be stored within the computer's main memory since at present the only 
practical computer is a mini computer of up to about 256k byte of main 
storage . The storage requirements for the QXX matrix alone would by far 
exceed this capacity. 

In order to meet the requirements for on-line processing, peripheria1 
storage devices with high data transfer and access rates are r equired such 
as high-speed-fixed-head-disk systems for smaJl blo~ks or, even better, disk 
emulation systems suc h as bulk core memories prohablv based o ~ bubb l e 
memory chips. Currently the latter a llow an ~ccess rate clcse to that of 
the main memory of the computer, thus probably allowing on-line computation 
of large blocks. 

A further reduction of CPU time can be achieved by utilizing the vector 
processing capacity of a readily available peripheral array processor and 
also freeing the mini-computer from comparator control procedures which can 
easily be transferred to microprocessor controllers as anticipated by 
Helava {7} and referred to by him as "digital projectors" . On the other 
hand, the implementation of peripheral bulk-core-memory and an array 
processor will increase the cost for an analytical plotter by about 50% at 
present price levels . 

EXPERIMENTATION RESULTS 

Timing Considerations: 

Although no analytical plotter was atailable for the preparation of 
this paper some experiments could be performed on tho PDP11/34 of the 
Department of Surveying at the University of Queensland. 

with 

The computer system used is a 

DEC - PDP 11/34 with 32k-words memory 

one RL01 - disk - drive - (5M-byte storage) 

one DECWRITER, 

in no way comparable with the suggested requirements for on-lireblock 
adjustments. 

In order to perform experiments giving results and indications which 
might be extrapolated t owards an ,"malytical plotter application, a self­
calibrating bundle block adjustment on the basis of the previously 
outlined Bayesian approach was programmed by the author, having the 
capacit:- for adjustment small blocks of up to 30 images taken by up to 
three different cameras and containing not more than 80 ground points 
(control plus ur.known points). 
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Since the correctness of the final results was checked against those 
obtained by other authors or programmes (eg . space resections as in {4}, 
bundle block adjustment of a KOENIGSHUEGEL sub-block with Bauer/Muller 
programme) the main interest was directed towards timing and its extrapol­
ation for more adquate hardware components . 

The total run time for the Koenigshuegel sub-block with six images and 
160 image coordinate pair observations (80 comparator measurements with x ' , 
y', x", y" , = 320 observations) was about 5~ hours . 

It was estimated that about 90% of this time was used for mechanical 
disk operation of I/0 . As recommended and technically possible, utilizing 
a fast peripheral storage device instead of the slow RL01 disk-drive can 
reduce the I/0 data transfer time by a factor of 100 or even more when disk 
emulation systems are used . 

The runtime of 5~ hourse for this block then will be reduced to about 
1 hour,hence , from an average 4 min per comparator measurement to 45 sec 
which is already about the average measurement time per point for a skilled 
operator (about 1 min) . 

Furthermore about 9/10 of the CPU - processing time is used for vector 
manipulation . Utilizing the capacities of an array processor for this task 
will reduce this by a factor of about 50 to 100. This finally brings the 
average time interval per point down to about ~ of a minute. 

Taking into account the time required for real time comparator movement 
control - probably over estimating - to be the same magnitude, the total 
required time interval between two consecutive point measurements will not 
exceed 1 minute for small blocks . Even for medium sized blocks the 
computing time between pointsettings may not considerably exceed 2 minutes 
and definitely not when the comparator movements are controlled by 
microprocessors . 

CONCLUSIONS 

Although this paper does not deal with new estimation procedures, two 
conclusions can be drawn from it, which the author regards as very 
important : 

1 . The Bayesian estimator provides a more natural justification for 
the use of unknown approximations as stochastic data in such a way 
that their valuable information contributes towards the refined result 
together with observations dynamically, including simple error 
snooping algorithm . 

Appropriate use of the Bayesian approach for adjustment can also 
solve many of the problerr's in free networks . 

2 . Although the time extrapolation done here lS rather speculative 
towards on-line application i n "realtime" rather than in "real" time 
it indicates this possibility for the near future depending on the 
instrument manufacturel" ' s intention to implement already available 
hardware developments . 
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The author strongly believes that the 1980's will bring a new 
generation of analytical photogrammetric instruments with real time or 
near real time capabilities for the data evaluation processes utilizing 
dynamically refined data in data bank systems. 
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